Coiling Liquids Science Experiments

Introduction :- :-

Have you ever noticed how your chocolate syrup coils when you pour it on your ice cream? Or how the soft ice cream doesn't just fill your cone up like water would, that it forms large loops instead? Our hypothesis is that it is due to the thick nature of these liquids. They belong to a group known as "thyrotrophic" liquids. That is, they are liquids because they are not solid, but they are, in some cases, incredibly thick and viscous. The reason motor oil is used in engines is because it is thick enough to stick to the piston shaft and stay there for a relatively long period of time.

  As we all know, the colder an object is, the closer together its molecules become due to the lessened energy state. It is our belief that this can affect the coiling of certain liquids. Also, the size of the stream could possibly have an effect, because without the correct amount of molecules, the stream should just fall straight. The size can be affected in two ways: by changing the size of the funnel's diameter, and by changing the height at which the funnel is placed. Perhaps the material of the surface onto which the liquid is poured can affect its coiling ability. 

Purpose

To determine why certain liquids coil, and what conditions control this coiling effect. 

Apparatus

1.  Table Syrup
2.  Chocolate Syrup
3.  Ketchup/Catsup
4.  Mustard
5.  Honey
6.  Mr. Bubble
7.  Ring Stand
8.  Funnels With Different Diameters
9.  Aluminum Pie Pan Substrate
10.      Plastic Tupperware Substrate
11.      Glass Casserole Dish Substrate
12.      Metal Cake Pan Substrate
13.      Clay Triangle
14.      Graduated Cylinder 


coiling-liquids-science-fair-project











Methods

1. Set up the ring stand.

Place a clay triangle on the ring, then place the appropriate funnel on the ring stand.

Decide which variable will be worked with, set up the experiment as such.

Pour quantity into the funnel, while blocking the spout on bottom, to prevent the flow.

Remove the stop from the spout and time the pouring of the liquid for 20 seconds while counting the number of coils it makes during that time.

Change the value of the current variable you are working with.

Repeat steps 4-6 for several more values with that particular liquid.

Repeat steps 3-7 with a different liquid.

Repeat steps 3-8 with a different independent variable. 

Results

Figure showing Data Table And Graphs For Number Of Coils On Four Different Substrates (Glass, Aluminum, Plastic, and Metal).
Metal Dish
Glass Dish
Aluminum Dish
Plastic Dish
Chocolate Syrup
60
55
84
68
Honey
50
49
44
40
Maple Syrup
0
0
0
0


Applications

Machines in outer space use liquid fuels. It is not desirable for these liquids to coil as they enter the combustion chamber, because it is inefficient and dangerous. This is due to the fact that the fuel could coil back into the fuel line where combustion could take place due to a chain reaction thereby destroying the fuel tanks and everyone in the vehicle, not to mention the vehicle itself. The coiling can be controlled by varying the temperature of the fuel.

Some more “down to earth” applications would be in the food industry. Currently when you’re getting a soft ice cream cone the server has to move their hand in a circular motion to the “coily” shape. By adjusting the temperature and the pressure of the ice cream dispenser, the ice cream could be forced to coil on its own. This would be helpful and reduce preparation time as well as reduce the risk of carpel tunnel syndrome.

Liquid metal, being relatively thick, should coil. So if it were poured into a vat of super cooled liquid it would be produce a spring with a very small diameter. The variables could be changed to change the spring’s “spring constant” for various uses. This would save on the construction of machinery needed to build these springs. It would also create springs that do not have seams in them, thereby making them stronger and durable.

Conclusion

The majority of the experiments proved that there are a maximum number of coils for each variable. In the variable temperature experiment, there appeared to be a maximum number of coils. Any temperature above this the number of coils dropped. Similarly, as the temperature of that liquid was dropped, the number of coils decreased. The maple syrup’s ideal temperature is considerably lower than that of honey and chocolate syrup. 

The ideal temperature is determined by the thickness of the liquid. The coils are caused by molecular backwash. As the molecules hit the substrate, some of them ‘bounce back’ towards the stream, blocking the path of the stream, and thereby creating coils. If there are too many molecules, then the coils will not form, because the mass is too great, thus, when the flow rate is increased the number of molecules in the stream increases. Comparatively, when the flow rate is decreased, due the fewer molecules in the stream, the backwash is less, causing fewer coils. According to the experiments, the substrate upon which the stream is poured has little to no effect on the number of coils. As the height of the funnel containing the liquid is increased, the number of coils increased for the honey. This is because of the decrease in molecules at the point of contact, therefore spreading out the thicker liquid to make more coils. 

However, in the case of chocolate syrup, the amount of coils increased to a point. This is because at the beginning height, there were too many molecules, but as the liquid began to taper the coils started to decrease again. Two of the funnels we were using had the same diameter spout, but one of them had ‘coiling guides’ in the mouth of the funnel. For the honey, it appeared to increase the coiling; it is because it had already started to spiral within the shaft. Although we did not do an experiment on the application of force, it appears that by applying a force to the liquid it appears that the coiling can be increased, this was seen, both with the bottle of chocolate syrup and catsup.

Read More

Dancing doll

Articles Required: One sheet of glass, a little thin paper, silk cloth, two books, a pair of scissors.

Take a piece of thin paper and draw a pretty figure of a doll on it. In height the doll should be a little 'smaller than the thickness of the books you've taken. Keep the two books separately at a distance and place the glass sheet on the top. Put the doll under the sheet. Now rub silk cloth on the glass top.

As the glass is rubbed, it gets electri­cally charged and attracts the doll. The moment your doll touches the sheet, it also gets charged and is repelled. But when it falls down, it's deprived of the charge and, as a result, is again attracted by the glass sheet. So, as long as you keep on rubbing the sheet with silk, this dance will continue.


For better results do two things. First, bend the doll's feet a little and join to the surface on which it's laid. Second, keep the base surface metallic—using aluminium or some other light metal.
Read More

Ice with boiling water

Articles Required: A candle, test-tube, ice cubes, a piece of thick wire and a matchbox.

If you are given a pot full of water with an ice cube in it, and asked to heat the water in such a way that it gets converted into steam without affecting the ice cube at al!, would you be able to do it? No? Well, you're right in a way. On the face of it, it sounds quite silly. On one side the. ice doesn't melt and on the other water containing it starts boiling! But the most amazing thing about it is that it's possible. And this experi­ment would prove that water is not a good conductor of heat. Moreover, it becomes light on heat­ing and rises upwards while the cold water takes its place.

Now if you want to prove it through experiment, do as explained here.

First of all, take a test-tube and fill three'-fourths of it with water. Now take an ice cube and coil the wire around it. Drop it in the test-tube. Normally, the ice floats on water, but because of the wire, it will sink to the bottom.

Now take a candle and light it. Tilt the test-tube a little and bring its mouth near the flame to heat the upper surface of water. You'll be surprised to see that the water at the upper surface gets heated and starts converting into steam, while the ice lying at the bottom remains as it is.
Read More

Vitamin C For Yourself - Science Experiment

Project Name :- Measurement of the Vitamin C Content in Various Fruit Drinks and Juices :- :-

Abstract

The purpose of this project was to measure the Vitamin C content of various fruit drinks and juices. My hypothesis was that if Vitamin C in juice is titrated with a starch/iodine reagent, then the juice with the largest amount of Vitamin C will complete the reaction sooner than juices with less Vitamin C. I believed that the pure Florida juices would contain the highest Vitamin C levels and would meet the recommended daily allowance (RDA) of 60 mg.

The juices were titrated into a reagent containing starch and iodine. The amount of juice needed to complete the reaction was a measure of the Vitamin C content. The volume of juice titrated was compared to the volume of Vitamin C standard titrated to calculate the Vitamin C content. I assumed that it was only the Vitamin C in juice that reacted with the starch/iodine complex. A more sophisticated method to accurately determine the Vitamin C level would be necessary to verify the results.

My hypothesis was correct. The juices containing the most Vitamin C titrated the starch/iodine reagent with the least volume of juice required. The pure Florida juices contained the least amount of Vitamin C compared to the other juices tested. I would recommend the purchase of drinks containing added Vitamin C such as Welchade Grape.

Vitamin C science fair project

Materials

----Reagents---

1.  2.5 ml cornstarch
2.  1000 ml distilled water

3.  2.5% tincture of Iodine (Poisonous if swallowed)
4.  1 250 mg Vitamin C tablet

----Juices Tested---

1.  Presidents Choice Orange Juice
2.  Equality Wildberry McCain Orange Juice

3.  Welchade Grape
4.  Equality Apple

5.  Del Monte Five Fruit
6.  Sunny Delight

7.  Master Choice Grapefruit
8.  V8 Splash Tropical Blend

9.  V8 Splash Berry Blend
10.              C'Plus Orange

11.              Five Alive
12.              Heinz Tomato Juice

---Equipment---

a)   1 100 ml graduated cylinder
b)  1 500 ml glass measuring cup

c)   2 10 ml plastic syringes
d)  30 250 ml white plastic cups

e)   3 500 ml glass jars with lids
f)    1 medium saucepan

g)   1 small plastic funnel
h)  1 2.5 ml measuring spoon

i)    Hammer
j)    Resealable plastic sandwich bag

Procedure

A. Titration of Vitamin C Standard

1. 25 ml of working starch/iodine reagent was poured into a plastic cup.

2. 4 ml of Vitamin C standard was drawn into a 10 ml syringe.

3. The standard was titrated into the starch iodine reagent drop by drop. The number of drops required to change the reagent colour from blue to clear were counted and recorded. The reagent was gently mixed after the addition of every few drops of standard.

4. Steps 1 to 3 were repeated to ensure precision.

B. Titration of Juices

1. 25 ml of starch/iodine reagent was poured into a plastic cup.

2. 4 ml of juice was drawn into a syringe.

3. The juice was titrated into the starch/iodine reagent. The number of drops required to change the reagent colour from blue to clear were counted and recorded. The reagent was gently mixed after the addition of every few drops of juice.

4. Steps 1 to 3 were repeated to ensure precision. The difference in the number of drops counted for the two tests had to be 2 or less or the testing was repeated a third time.

Conclusions

I expected that the pure Florida juices, President's Choice Orange and Master Choice Grapefruit would contain the highest Vitamin C content. This did not prove to be true. They had the lowest concentration of Vitamin C of the juices tested and I had to titrate larger volumes of these juices to complete the reaction.

The recommended daily allowance of Vitamin C is 60 mg. All products with the exception of Master Choice Grapefruit met this requirement. Welchade Grape Juice is an excellent source of Vitamin C, especially for children, since they would only need to drink 60 ml to meet the RDA.

All products with the exception of President's Choice Orange and Master Choice Grapefruit had Vitamin C added. This seems necessary because either there is not enough Vitamin C in oranges or grapefruits or it is affected by the processing of the juice. It is known that Vitamin C is lost when it is exposed to heat or light.

I would recommend the purchase of juices with added Vitamin C. Vitamin C would be more stable in juice containers that are protected from light such as juice packs or cans.
Read More
Home About-us Privacy Policy Contact-us
Copyright © 2017 www.sciencefairprojects.in | All Rights Reserved. Design By Templateclue